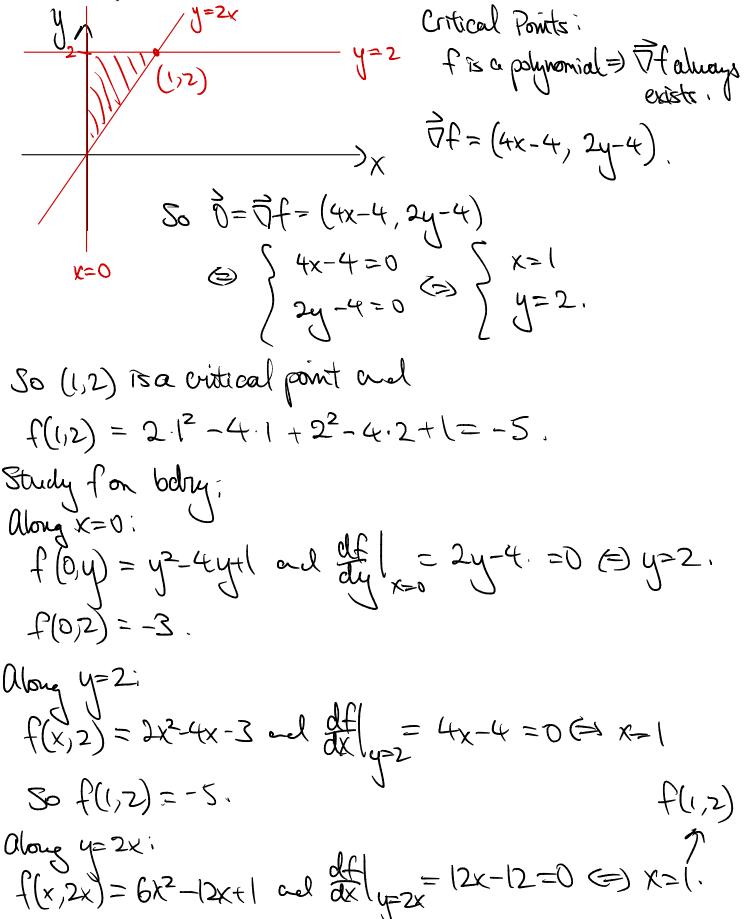
THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2010F Advanced Calculus I Tutorial 10 Date: 18 June, 2025

- 1. Find the absolute maxim and minima of the function $f(x, y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.
- 2. (a) Show that (0,0) is a critical point of $f(x,y) = x^2 + kxy + y^2$ for any $k \in \mathbb{R}$.
 - (b) For what values of k does the Second Derivative Test guarantee that f will have a saddle point at (0,0), a local minimum at (0,0)?
- 3. Find the 2nd order Taylor polynomial near the origin of
 - (a) $f(x, y) = e^x \ln(1+y);$
 - (b) $f(x, y) = \sin(x^2 + y^2)$.
- 4. Find the 2nd order Taylor polynomial of $f(x, y) = 4xy x^4 y^4$ near (0,0) and also find and classify all of its critical points using the Second Derivative Test.

1. Find the absolute maxim and minima of the function $f(x, y) = 2x^2 - 4x + y^2 - 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.



So we conclude that I has absolute minimum at (•	•	• •																										
•										•	map at $(0,0)$ with $f(0,0) = ($												•	$f(1,2) \ge -3$						•	• •	•	•	••••															
•	•	: (0	مـد	l	•	f	1		z.	כ	Ċ	40	2(ΪV	Ŵ	J.	P	. (F	ł	: (<u></u> (ار (ð)		•	~	. ر مر	£1	م	f	0)	, C))	 - (•	• •		•	•	•	•		/		•	•	• •
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	```		•		•	•	• •		•	•					•	•		•	•	•	Ĺ	- 1	/		•		• •
										•								•						•					• •																• •				
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		• •			•			•		•	•			•	•	•	•	• •				• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	 •	•	•		•	•	•	•	•	• •	• •			• •
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•				• •		•	•	•	•		 •	•			•	•	•	•	•	• •		•	•	• •
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•						•	•	•	•		 •	•			•	•	•	•	•	• •		•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						•	•	•	•		•	•			•	•	•	•	•			•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•		•	•				•	•	•	•			•	•	• •
																																			•			•				0			• •				
																									•				• •		•									•					• •				
•	•	•	•		•	•		•	•			•	•	•	•	•	•			•	•	•		•	•	•			• •		•	0				 •				0	•	0			• •				
•	•	•	•	•	•	•	•	•		•		•	•	•	•		•	•		•			•	•	•	•	•	•	• •		•		•	•	•	•		•		•	•	0	•	•	• •		•		• •
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •	•	•	•	•		•	 •	•	•			•	•	•	•	• •				• •

- 2. (a) Show that (0,0) is a critical point of $f(x,y) = x^2 + kxy + y^2$ for any $k \in \mathbb{R}$.
 - (b) For what values of k does the Second Derivative Test guarantee that f will have a saddle point at (0,0), a local minimum at (0,0)?

a)
$$k=0: f(x,y) = x^{2}+y^{2}$$
 and $f(x,y) = (0,0)$
 $= i(x,y) = (0,0)$.
So $(0,0)$ is a critical
part.
 $k \neq 0: f(x,y) = x^{2} + kxy + y^{2}$ and $f(x) = (2x + kxy, 2y + kx) = (0,0)$
(a) $f(x,y) = x^{2} + kxy + y^{2}$ and $f(x) = (2x + kxy, 2y + kx) = (0,0)$
(b) $2x + kx = 0 (1)$ $(1) = x = -\frac{ky}{21}$
 $2y + kx = 0 (2)$ subsists $(2): 2y + k(-\frac{ky}{2}) = 0$
(c) $2y - \frac{k^{2}}{2} = 0$
 $= i y^{2} = 0$ or $k = 4$.
 $if y = 0$, then $x > 0$.
 $if k = 4$: then $\begin{cases} 2x + 4xy = 0 (1)' \\ 2y + 4x = 0 (2)' \\ 3x + 4xy - 4y - 8x = 0.$
 $= i y = 0$.
 $= i y = 0$.

b) Second Derivative Test: at vitical point a: $f_{xx} < 0$ and $det(Hf(\overline{a})) > 0 \Rightarrow \overline{a}$ local map. $f_{XX} > 0$ and det (Hf(a))>0 =) à local min. n det (HF(ā)) ⊂D =) à sadelle pt " $det(H,f(\alpha)) = 0 =)$ inconclusive. $HF(0,0) = \int f_{XX}(0,0) f_{XY}(0,0) = \int 2 k \gamma$ (fyx(0,0) fyy(0,0)] [h 2] Note theat fix = 2 > 0. $det(Hf(0,0)) = f_{xx}f_{yy} - f_{xy}f_{yx} = 2\cdot2 - k\cdot k = 4 - k^{2}$ $k \cdot 2, k > 2, det(Hf(0,0)) < 0 =) \text{ sadelle pt } k$ -2 < k < 2, det(Hf(0,0)) > 0 =) local min. $k=\pm 2$, mondusive

3. Find the 2nd order Taylor polynomial near the origin of

(a)
$$f(x,y) = e^{x} \ln(1+y);$$

(b) $f(x,y) = \sin(x^{2}+y^{2}).$
 $P_{2}(x,y) = f(a|b) + \nabla f(a|b) \cdot [x-a] + \frac{1}{2}[x-a,y-b] H(f(a|b) | x-a] + \frac{1}{2}[x-a,y-b] + \frac{$

a)
$$f(0,0) = e^{0} ln(1+0) = 1 \cdot ln(1) = 0$$
,
 $\widehat{\nabla}f(0,0) = \left[e^{x}ln(1+y)|_{(0,0)}, \frac{e^{x}}{1+y}|_{(0,0)}\right]$
 $= \left[0, 1\right]$.

$$Hf(0,0) = \begin{cases} e^{t} lu(tty) |_{(0,0)} & \text{Try} |_{(0,0)} \\ e^{t} \\ tty |_{(0,0)} & \frac{e^{t}}{(tty)^{2}} |_{(0,0)} \end{cases}$$
$$= \begin{cases} 0 & 1 \\ 1 & -1 \end{cases}$$

 $S_{0} P_{2}(x,y) = 0 + [0,1] [x] + \frac{1}{2}[x,y] [0,1] [x] + \frac{1}{2}[x,y] [0,1] [x]$

$$= y + \frac{1}{2} [x, y] [y] = y + \frac{1}{2} [x, y] [x - y] = y + \frac{1}{2} [x - y] = y + xy - \frac{1}{2} y^{2} (x - y) = y + xy - \frac{1}{2} y^{2} (x - y) = y + \frac{1}{2} [x - y] = \frac{1}{2} [x - y] =$$

5) $f(0,0) = Sin(0^2 - 0^2) = 0$. $\vec{\nabla} f(0,0) = \left[2x\cos(x^2 + y^2)\right]_{(0,0)} 2y\cos(x^2 + y^2)\left[(0,0)\right] = \left[0,0\right]$. $Hf(0,0) = \int 2\cos(x^2+y^2) - 4x^2\sin(x^2+y^2) \Big|_{(0,0)} + 4xey \sin(x^2+y^2) \Big|_{(0,0)}$ $-4xysin(x^{2}+y^{2})|_{(2,0)}$ $2\cos(x^2+y^2)-4y^2\sin(x^2+y^2)|_{(0,0)}$ $= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$ $S_{0} P_{2}(x,y) = O_{+} [O_{0}P_{1}f_{1}^{2}] + \frac{1}{2} [x y] [2 o_{-}][x] \\= \frac{1}{2} [x y] [2 y] = x^{2} + y^{2} (x)$

4. Find the 2nd order Taylor polynomial of $f(x, y) = 4xy - x^4 - y^4$ near (0,0) and also find and classify all of its critical points using the Second Derivative Test.

$$f(0,0) = 0 \quad \forall f(0,0) = [4y-4x^{3}]_{(0,0)} 4x-4y^{3}]_{(0,0)} = [0, 0] \\ Hf(0,0) = \begin{bmatrix} -12x^{2}(0,0) & 4 \\ 4 & -12y^{2}(0,0) \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ 4 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ & = \begin{bmatrix} 1 \\ 1 \\$$